مقایسه توانایی پیش بینی مدل های var ، arima و شبکه های عصبی (ann) :تقاضای جهانی نفت اوپک

Authors

مصطفی گرگینی

دانشجوی کارشناسی ارشد اقتصاد دانشگاه شهید باهنر کرمان شهرام گلستانی

استادیار دانشکده مدیریت و اقتصاد دانشگاه شهید باهنر کرمان فاطمه حاج عباسی

دانشجوی کارشناسی ارشد آمار دانشگاه شهید باهنر کرمان

abstract

مارهای کشور، حاکی از رشد مصرف بنزین در بخش حمل و نقل کشور بوده و در سال­های اخیر بنزین مصرفی بطور قابل ملاحظه­ای بیش از ظرفیت پالایش داخلی شده است و لذا هزینه واردات بنزین سهم نسبتاً مهمی از بودجه دولت را به خود اختصاص می­دهد. افزایش جمعیت شهری، اقبال عمومی استفاده از خودروهای شخصی و عرضه بنزین به قیمت یارانه­ای از عوامل تعیین­کننده این پدیده هستند. علاوه بر تحمیل هزینه­های فزاینده به اقتصاد کشور، با ایجاد آلودگی بیش از حد هوا در مناطق شهری لطمات جبران­ناپذیری نیز بر سلامت شهروندان وارد می­کنند. در این پژوهش سعی بر آن است که با استفاده

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسه توانایی پیش‌بینی مدل‌های VAR ، ARIMA و شبکه‌های عصبی (ANN) :تقاضای جهانی نفت اوپک

مارهای کشور، حاکی از رشد مصرف بنزین در بخش حمل و نقل کشور بوده و در سال­های اخیر بنزین مصرفی بطور قابل ملاحظه­ای بیش از ظرفیت پالایش داخلی شده است و لذا هزینه واردات بنزین سهم نسبتاً مهمی از بودجه دولت را به خود اختصاص می­دهد. افزایش جمعیت شهری، اقبال عمومی استفاده از خودروهای شخصی و عرضه بنزین به قیمت یارانه­ای از عوامل تعیین­کننده این پدیده هستند. علاوه بر تحمیل هزینه­های فزاینده به اقتصاد کشو...

full text

مقایسه توانایی پیش بینی مدل های شبکه عصبی مصنوعی (ANN)، سیستم استنتاج عصبی- فازی انطباقی(ANFIS) و تبدیل موجک-عصبی: قیمت سبد نفت خام اوپک

پیش بینی قیمت نفت خام از مهم ترین موضوعات فرا روی اقتصاد انرژی است. پیش بینی مناسب قیمت نفت و آن هم قیمت نفت خام اوپک، به دلیل درگیر بودن تعدادی از کشورهای در حال توسعه این سازمان با قیمت نفت، می تواند در برنامه ریزی های سازمان و کشورهای عضو آن، اهمیت ویژه ای داشته باشد. برآورد و پیش بینی روند قیمت نفت، به خاطر نبود داده های تاریخی مهم و محدودیت اطلاعات مرتبط با شاخص های موثر بر روند قیمت نفت، ...

full text

مطالعه تطبیقی روش های خطی ARIMA و غیر خطی شبکه های عصبی فازی در پیش بینی تقاضای اشتراک گاز شهری

اطلاع از میزان تقاضای موجود در هر دوره یکی از مباحثی است که شرکت ملی گاز در راه پاسخگویی به مراجعان به آن نیاز دارد.عدم اطلاع از میزان تقاضای اشتراک سبب ایجاد مشکلاتی مانند عدم آگاهی از تعداد پیمانکاران مورد نیاز و همچنین فقدان برنامه کنترل موجودی مناسب برای انواع کنتورهای موردنیاز و دیگر عوامل مرتبط می شود. در چند دهه گذشته،اقتصاددانان و علمای مدیریت برای براورد تقاضا غالباً از روش های اقتصادس...

full text

پیش بینی مقدار تقاضای نفت خام در ایران با استفاده از شبکه های عصبی مصنوعی (ann) و مدل armax

هدف تحقیق مدل­سازی و پیش­بینی تقاضای نفت در ایران با استفاده از  روش، شبکه عصبی مصنوعی (ann)، می باشد. در مقاله تلاش شده تا یافته های تحقیق با استفاده از مدل مذکور با مدل ­armax مقایسه گردد تا میزان دقت پیش­بینی شبکه عصبی مورد ارزیابی علمی قرار گیرد. نتیجه مطالعه نشان می دهد که مدل شبکه عصبی مصنوعی از دقت بیشتری در پیش بینی تقاضای نفت خام ایران برخوردار است. همچنین در این مقاله متغیرهای تعیین ک...

full text

ترکیب شبکه های عصبی و الگوریتم های تکاملی در پیش بینی تقاضای انرژی

پیش­بینی روند تقاضای انرژی جهت اتخاذ سیاست­های مقتضی و مناسب اهمیت فراوانی دارد. به دلیل روند پرنوسان و غیر خطی تقاضای انرژی و متغیرهای موثر بر آن قابلیت روش­های هوشمند و غیر خطی به خصوص شبکه­های عصبی و الگوریتم­های تکاملی به منظور پیش­بینی تقاضای انرژی در مطالعات مختلف به اثبات رسیده است. با وجود نقاط قوت فراوان، این تکنیک­ها با مسائل مهمی همچون تحمیل فرم تبعی خاص- در الگوریتم­های تکاملی- یا ن...

full text

پیش بینی منابع مالی بانک با استفاده از مدل خطی( ARIMA) و غیرخطی شبکه های عصبی مصنوعی فازی

یکی از مهم‌ترین موارد مورد علاقه مدیران بانکی به عنوان متغیری تأثیرگذار بر صنعت بانکداری، اطلاع از وضعیت سپرده‌های بانکی است که فعالیت بانک تا حد زیادی بستگی به آن دارد. ازاین‌رو مدیران بانک‌ها علاقه‌مند هستند بدانند که میزان کل سپرده‌های بانک در زمان معینی در آینده چقدر خواهد بود. پیش‌بینی میزان سپرده‌ها، تغییر و نوسان این سپرده­ها می‌تواند در امر برنامه­ریزی و تصمیم­گیری به بانک‌ها کمک نماید....

full text

My Resources

Save resource for easier access later


Journal title:
اقتصاد انرژی ایران

جلد ۱، شماره ۴، صفحات ۱۴۵-۱۶۸

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023